Commentary: Extracellular peptidase hunting for improvement of protein production in plant cells and roots
نویسندگان
چکیده
Citation: Kunert KJ and Pillay P (2015) Commentary: Extracellular peptidase hunting for improvement of protein production in plant cells and roots. Despite much recent success in plant-based protein production, key challenges, such as undesired plant proteolytic activities, still severely compromises current recombinant protein production with peptidases affecting protein stability (Pillay et al., 2013). The paper by Lallemand et al. (2015) reporting about identification of extracellular peptidases compromising protein production in plant cells and roots is therefore an excellent contribution to ultimately advance our understanding of peptidase action in plant-based recombinant protein production (Lallemand et al., 2015). Since research has so far not paid a great amount of attention to this problem, a more detailed view, as taken in the paper, is highly beneficial to elucidate such peptidases in the extracellular space. This offers great benefits in terms of protein stability and higher protein production yield. Previous approaches used to address this challenge in plants has for example included peptidase silencing by applying RNA interference technology (Voinnet et al., 2003; Hatsugai et al., 2004) and also co-expressing specific protease inhibitors as " companions " to limit specific protease activities (Goulet et al., 2010, 2012; Pillay et al., 2012). However, silencing a specific peptidase or co-expressing a " companion " protease inhibitor always bears the risk of vital plant metabolic pathways also being affected (Van der Vyver et al., 2003; Senthil-Kumar et al., 2007). This can compromise efficient recombinant protein production in a plant-based system. In addition, work on Arabidopsis, as already done by Lallemand et al. (2015), with its existing wealth of transcriptome and gene data (The_Arabidopsis_Genome_Initiative, 2000) will enable future identification of similar peptidases in other plant species when comparative genomics approaches are applied in combination with Next Generation Sequencing. By investigating two plant species (Arabidopsis thaliana and Nicotiana tabacum); the Lallemand et al. (2015) study particularly unraveled that root-secretion production contained more peptidase activity than, for example, the extracellular medium of cell suspensions. A less proteolytic enriched environment is certainly more favorable for the production of recombinant proteins, especially antibodies. This key finding has, therefore, not only significantly extended our understanding how particular plant species contribute to proteolytic activity and type of peptidase produced but has also contributed to advancing our understanding on how proteases in different plant parts can compromise recombinant protein stability. The study has whereby set a strong working basis for exploring, in the future, proteolytic …
منابع مشابه
Extracellular peptidase hunting for improvement of protein production in plant cells and roots
Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms o...
متن کاملInduction of DrsB1-CBDAvr4 Recombinant Protein in Hairy and Adventitious Roots of T1 Transgenic Plants
Hairy and adventitious roots are efficient systems for expressing recombinant proteins. In the present study, the amount of DrsB1-CBDAvr4 recombinant protein in hairy and adventitious root systems was compared. To this end, the effect of different factors on the optimization of culture conditions to obtain adventitious and hairy roots was evaluated in three separate experiments by assessment of...
متن کاملEffect of extracellular matrix on testosterone production during in vitro culture of bovine testicular cells
Testosterone is believed to play a significant role in spermatogenesis, but its contribution to the process of spermatogenesis is not completely understood. Given that extracellular matrix (ECM) facilitates differentiation of spermatogonial stem cells (SSCs) during culture, the present study was conducted to elucidate whether testosterone contribute to the permissive effect of ECM on SSCs diffe...
متن کاملEnergy Flow from Root to Shoot: A Comprehensive In silico Analysis
Background: Root to shoot connection and transfer of information seems to be taken place mostly via the transmissions of signal molecules, secondary metabolites, amino acids, hormones and proteins, through xylem sap. Examination of earlier reports is indicative of relatively high levels of conservation in xylem sap protein compositions. Apparently these protein molecules are be...
متن کاملSelecting appropriate hosts for recombinant proteins production: Review article
In recent years, the number of recombinant proteins used for therapeutic applications and industry has increased dramatically. Recombinant proteins are produced in many host organisms (microbial, insect, plant and mammalian cells). There are many factors to consider when choosing the optimal system for protein expression and purification including the mass, purity or solubility of the recombina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015